Transition Metal Methylene Complexes, **XXVII** l)

Synthesis of the First Heavy-Metal Substituted v-Methylene Complex

Wolfgang A. Herrmann * and *John M. Huggins*)*

Institut fur Anorganische Chemie der Universitat Regensburg, Universitatsstr. 31, D-8400 Regensburg 1

Received June 29, 1981

Ubergangsmetall-Methylen-Komplexe, XXVII 1)

Synthese des ersten schwermetallsubstituierten p-Methylen-Komplexes

Die Umsetzung des cycloadditionsaktiven zweikernigen Carbonylrhodium-Komplexes **1** mit dem Diazoquecksilber-Substrat 2 ergibt unter rascher N₂-Eliminierung (THF, -70°C) die in Substanz isolierbare Verbindung **3** als erstes Beispiel schwermetallsubstituierter p-Methylen-Komplexe.

The reaction of diazoalkanes with unsaturated transition metal complexes is one of the most general synthetic methods available for the preparation of dimetallacyclopropane-type μ -methylene complexes²⁾. The best metal substrates for these reactions very likely are complexes having metal-metal multiple bonds, which can add to the alkylidene fragment with only minimal changes in coordination geometry and without expulsion of a ligand. We have now succeeded in employing this method in the synthesis of the first heavy-metal substituted μ -methylene compound, $[\mu_1$ -C- $(CO_2C_2H_3){(n^5-C_5Me_5)Rh(\mu-CO)}_2$]₂Hg (3). This easily accessible complex now represents a promising starting point for methylene bridge homologation using electrophilic reagents, chemistry that has been established for *Buchner's* old diazo precursor $Hg(C = N_2)CO_2C_2H_s$, (2)³⁾ by the *Schöllkopf* group^{4,5)}.

Bis[diazo(ethoxycarbonyl)methyl]mercury (2) reacts with the dinuclear carbonylrhodium complex 1 even at -70° C in tetrahydrofuran to give the diamagnetic, neutral compound 3 in nearly quantitative yield. Chromatography on Florisil with subsequent crystallization allows to isolate analytically pure **3** as a purple solid. Although crystalline samples may be handled briefly in air without noticeable decomposition (IR), **3** is very air-sensitive in solution (hydrocarbons, diethyl ether, tetrahydrofuran, aromatic solvents); rapid decomposition occurs, even in the absence of oxygen, in halogenated solvents such as chloroform.

The novel μ -mercuriomethylene complex was characterized by elemental analysis, IR and ¹H NMR spectroscopy. The infrared absorptions at 1820 and 1765 cm⁻¹ (KBr) are typical of metalto-metal carbonyl bridges and very much resemble those of the structurally well established compounds of type $(\mu$ -CRR') $[(\eta^5$ -C₅Me₅ $)Rh(\mu$ -CO)]₂ (e.g., CRR' = tetrabromocyclopentadienylidene^{1,2a,6}); in addition, the ester function gives rise to a characteristic absorption at 1695 cm⁻¹ (KBr)'). The **'H** NMR spectra are in accord with the crowded structure as indicated in formula **3** (two sets of equivalent C,Me, protons). Confirmation of the molecular weight of **3** proved

Chem. Ber. 115 (1982)

^{*)} Alexander-von-Humboldt Fellow, 1980/81 (University of California, Berkeley/USA).

impossible by mass spectrometry, neither by ion impact nor by field desorption methods, yielding instead the known derivative $[\mu$ -CH(CO₂C₂H₅)][(η ⁵-C₅Me₅)Rh(CO)]₂^{1,2a,6)} as a result of decomposition under the conditions required for these measurements. However, a proper molecular weight determination was obtained by osmometry under scrupulously air-free conditions.

The reaction leading to 3 demonstrates that heavy-metal substituted μ -methylene complexes (a) can be prepared by the same method as the conventional members of this series $2a, b, 6, 8$) and, (b) display reasonable thermal stability facilitating investigation of their chemistry. Only mercuryfree μ -methylidyne complexes have so far been accessible from α -mercuriodiazoalkanes⁹⁾.

Experimental Part

All manipulations were conducted with careful exclusion of oxygen and water using standard Schlenk techniques. All solvents were thoroughly dried by refluxing over Na/K alloy or phosphorous pentoxide, resp., and were stored under nitrogen. - IR: Beckman Infrared Grating Spectrophotometer 4240. $-$ ¹H NMR: Bruker WH-90. $-$ 1 was prepared as described in the literature^{1,6)} from $\{\eta^5 - C_5$ (CH₃)₅]Rh(CO)₂; the α -mercuriodiazoalkane **2** was obtained through H/Hg replacement from ethyl diazoacetate usind *red* mercury oxide3.5). Elemental analyses were carried out in the Mikroanalytische Laboratorien, vorm. A. Bernhardt, D-5270 Gummersbach/Elbach 1.

Mercurybis[p3-(ethoxycarbonylrnethylidyne)- bis[p-carbonyl-(\$-pentarnethylcyclopentadienyl) rhodiurn(Rh - *Rh)]] (3):* A solution of 2 (193 mg, 0.45 mmol) in 5 ml of tetrahydrofuran was added to a magnetically stirred suspension of $1(483$ mg, 0.91 mmol) in 20 ml of the same solvent cooled to -70° C. Immediate N₂ evolution with concomitant color change from blue to rust-red was observed. The solution was allowed to warm up to room temperature over ca. 60 min; the solvent was then removed in vacuo. The resulting deep purple residue was subjected to column chromatography on Florisil (Merck, $100-200$ mesh ASTM; column dimensions 30×1.5 cm; watercooled jacket, ca. 15°C) eluting first with toluene traces of unreacted **2,** then with THF/toluene (1: 1) compound 3 as a purple band. Some decomposed products remain at the origin.

Chem. Ber. *115* (1982)

Removal of the solvent in vacuo yielded 621 mg (95%) of **3** as a purple solid. Subsequent crystallization from a minimum amount of diethyl ether $(-78\degree C)$ gave dark purple lustrous crystals consisting of multiple planes. M. p. 145° C (dec., sealed tube). - IR: (THF) 1820 m, 1785 w (sh), 1770 s, 1700 cm⁻¹ m; (KBr) 1820 m, 1765 s-vs, 1695 cm⁻¹ m. - ¹H NMR $(I\text{D}_6]$ benzene, int. TMS, 25 °C): CH₃, ester $\delta = 1.18$ [t, 3H; ${}^3J_{\text{H,H}} = 7.0$ Hz], CH₃, C₅Me₅ 1.25 and 1.82 ("s", equal intensity, total int. 30H], $CH₂$, ester 4.17 [q, 2H; broadened signal]. $-$ Conductivity: $\Lambda = 6$ cm² · mol⁻¹ · Ω^{-1} (non-electrolyte; benzene, $c = 10^{-3}$ mol/l, $T = 15.1$ °C).

 $C_{52}H_{70}HgO_8Rh_4$ (1435.3) Calc. C 43.51 H 4.92 Hg 13.97 N 0.00 Rh 28.68 Found C 43.41 H 4.89 Hg 13.77 N <0.2 Rh 28.72 Mol. weight 1400 ± 50 (osmometrically in benzene)

Immediate crystallization of the crude product (see above) without chromatography gives slightly impure samples that decompose in the range $135...140^{\circ}$ C although IR spectra are practically identical with those obtained from chromatographed samples. Nitrogen and mercury analyses show that the composition of **3** does not change during chromatography on florisil (N, 0% ; Hg, 13.65%); moreover, the initial product has the same structure (IR) as the chromatographed product.

[244/81]

This work was gratefully supported by the *Deutsche Forschungsgemeinschaft,* the *Fonds der Chernischen Industrie, Degussa Hanau, Chemische Werke Marl Hiils,* and the *Alexander von Hurnboldt-Stiftung.* - For Communication **XXVI,** see: *W. A. Herrmann, J. Plank, Ch. Bauer, M. L. Ziegler, E. Guggolz,* and *R. Alt, 2.* Anorg. Allg. Chem., in press.

er, M. L. Ziegler, E. Guggolz, and *R. Alt, Z. Anorg. Allg. Chem., in press.* $-$ ^{2b)} *W. A. Herr-*² Reviews: ^{2a}) *W. A. Herrmann,* Pure Appl. Chem. (1981), in press. - **2c)** *W. A. Herrmann,* Angew. Chem. **90,** ⁸⁵⁵ (1978); Angew. Chem., Int. Ed. Engl. **17,** 800 (1978).

³⁾ *E. Buchner,* Ber. Dtsch. Chem. Ges. **28,** 215 (1895).

^{4, 4}a) *U. Schollkopf* and *N. Rieber,* Chem. Ber. **102,** 488 (1969). - **4b)** (1. *Schollkopf, F. Gerhart, M. Reetz, H. Frasnelli,* and *H. Schurnacher,* Liebigs Ann. Chem. **716,** 204 (1968). - **4c)** *M. Reetz, U. Schollkopf,* and *B. Bdnhidai,* Liebigs Ann. Chem. **1973,** 599. - **4d)** *U. Schollkopf, B. Banhidai,* and *(1.-11. Scholz,* Liebigs Ann. Chem. **761,** 137 (1972).

⁵⁾ For a brief review, see: *M. Regitz,* Synthesis **1972,** 351.

⁶⁾ *W.* A. *Herrmann, Ch. Bauer, J. Plank, W. Kalcher, D. Speth,* and *M. L. Ziegler,* Angew. Chem. **93,** 212 (1981); Angew. Chem., Int. Ed. Engl. **20,** 193 (1981).

^{7,} The observation that vC0 occurs at lower wavenumbers in **2** (1678 cm-', THF) not only proves the presence of uncomplexed ester functions in **3** but also demonstrates loss of mesomeric conjugation when going from 2 to 3 as a result of N₂-elimination. Also, the vCO absorption of solid-state IR spectra (KBr) are higher for **3** (1695 cm^{-1}) compared with the diazo precursor **2** $(1652 \text{ cm}^{-1}).$

⁸⁾ *W. A. Herrmann, Ch. Bauer,* **G.** *Kriechbaum, H. Kunkely, M. L. Ziegler, D. Speth,* and *E. Guggolz,* Chem. Ber. (1982), in press.

^{9) 92.)} *W. A. Herrmann,* Angew. Chem. **86,** 895 (1974); Angew. Chem., Int. Ed. Engl. **13,** 812 (1974). - 9b) *W. A. Herrmann,* **J.** Organomet. Chem. **97,** 1 (1975).